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Abstract
Diffusion models can yield image sample quality superior to
the current state-of-the-art generative models. However, most
of the previous approaches use U-Net in the diffusion model
and rarely employ a different network. We argue that it is
necessary to try diverse network structures in the diffusion
model, so that we can figure out the most suitable one. Based
on this insight , We plan to perform experiments of image
generation on three different neural networks: U-Net, Resnet
and Transformer. Our study expects to propose a network fit-
ness analysis of the diffusion model domain. We experiment
with Cifar-10 in order to compare these methods and proved
that the diffusion model based on U-Net works best.

Introduction
Image generation has always been a hot spot in computer
vision and has a wide range of applications in real life.
The target of image generation aims to synthesize realis-
tic and vivid images through a generative model (Yan et al.
2016; Ma et al. 2018). GAN (Creswell et al. 2018; Karras,
Laine, and Aila 2019; Karras et al. 2020) have dominated
the field of image generation for a long period. By training
two networks with adversarial loss, the generator is capable
to synthesis striking image to treat the discriminator. How-
ever, GAN is prone to modal collapse (Thanh-Tung and Tran
2020; Srivastava et al. 2017; Liu et al. 2019), so other meth-
ods like VAE (Kingma and Welling 2013; Vahdat and Kautz
2020), autoregressive models (Oord et al. 2016; Van den
Oord et al. 2016), flow-based models (Dinh, Sohl-Dickstein,
and Bengio 2016; Kingma and Dhariwal 2018) and diffusion
models (Ho, Jain, and Abbeel 2020; Song, Meng, and Ermon
2020) have been developed to help release this dilemma in
image generation, but their performance are still inferior to
GAN models. Recently, a large text-to-image model named
DALL·E (Ramesh et al. 2021) proposed by OpenAI is ca-
pable to synthesis striking and photo-realistic image condi-
tioned to the input text, which arouse much more attention
to the diffusion model since published. From then on, diffu-
sion models have emerged as the new state-of-the-art in the
field of image synthesis.

Specifically, a diffusion model can be regarded as a com-
position of forward noise-adding process and backward
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noise-reduction process (Ho, Jain, and Abbeel 2020; Song,
Meng, and Ermon 2020; Yang et al. 2022). In the forward
diffusion process, by adding a very small amount of Gaus-
sian noise to a real image in T steps, the data sample gradu-
ally loses its feature and is equivalent to an isotropic Gaus-
sian distribution. And if the forward process could be re-
verse, a true sample can be recreated from a Gaussian noise
input. Most of the diffusion model adopt a deep neural net-
work to predict the added noise at each timestep, gradually
denoising the input noise to a realistic image. This method is
easy to implement (Ho, Jain, and Abbeel 2020; Song, Meng,
and Ermon 2020), since both forward and backward are de-
terministic Markov chains, the training of diffusion models
is more stable than GANs. Not only does the diffusion model
break the long-time dominance of GANs in image synthesis
(Song and Ermon 2019; Song et al. 2020), they have shown
potential in a variety of domains, ranging from computer
vision (Amit et al. 2021; Baranchuk et al. 2021; Cai et al.
2020) to natural language processing (Austin et al. 2021a;
Hoogeboom et al. 2021; Li et al. 2022b).

In order to generate better quality images, some sampling
techniques have been applied in diffusion models (Ho and
Salimans 2022; Dhariwal and Nichol 2021; Liu et al. 2021a;
Kim, Kwon, and Ye 2022), while the network used in the
noise prediction always keeps the same. Most methods used
U-Net in the diffusion models and seldom adopted differ-
ent networks. We believe it is necessary to try different net-
work structures in diffusion model, as we can figure out the
most suitable one by comparing the experiment results. We
decide to conduct the experiments of image generation on
three different neural networks: U-Net (Ronneberger, Fis-
cher, and Brox 2015), Resnet (He et al. 2016) and Trans-
former (Vaswani et al. 2017; Devlin et al. 2018). These
networks stand for three different paradigms in deep learn-
ing. U-Net has a typical encoder-decoder structure to per-
form feature extraction and reconstruction, which is widely
used in medical image segmentation. Famous for its short-
cut connection, Resnet successfully alleviate gradient van-
ishment or explosion. By adopting attention mechanism,
transformer-based models advance state-of-the-art in many
tasks in NLP, which also demonstrate promising results on
certain vision tasks, specifically in classification and joint
vision-language modeling. By conducting experiments on
these three models, we look forward to proposing an anal-



ysis of the network adaptability in the field of diffusion
model.

We conducted our experiments on Cifar-10 dataset and
analyze the image generation results in both qualitative and
quantitative perspectives. As for qualitative analysis, we
compared the output of different models by visualizing the
synthesized images. As for the quantitative analysis, we de-
cide to use three metrics: FID, IS and accuracy to analyze
the quality and diversity of the generated images. With our
analysis and comparison, we could find that the diffusion
model based on U-Net works best.

Related Work
Diffusion Model
As a class of deep generative models, diffusion model aims
to transform the prior data distribution into random noise
before revising the transformations step by step to rebuild a
brand new sample with the same distribution as the prior. In
the recent year, diffusion models have demonstrated remark-
able results in the fields including computer vision (Nichol
et al. 2022; Saharia et al. 2022; Zhang et al. 2022), nature
language processing (Austin et al. 2021b; Gong et al. 2022),
audio processing (Huang et al. 2022), interdisciplinary ap-
plications(Hoogeboom et al. 2022), etc.

Resnet
Resnet (He et al. 2016) is a deep neural networks with resid-
ual learning framework, proposed to learn residual of iden-
tity mapping, which can ease the training of networks. These
technique are easier to optimize, and can gain accuracy from
considerably increased depth. Resnet was first proposed to
be applied in image recognition, but it widely used in many
models as a backbone in other direction in computer vision
(Li et al. 2022a; Wang et al. 2017).

U-Net
U-Net (Ronneberger, Fischer, and Brox 2015) relies on the
strong use of data augmentation to use the available anno-
tated samples more efficiently. The architecture of U-Net
consists of a contracting path to capture context and a sym-
metric expanding path that enables precise localization. In
image segmentation tasks, especially in medical image seg-
mentation, U-Net is undoubtedly one of the most successful
methods. There are many new convolutional neural network
methods, but many still continue the framework of U-Net,
like U-Net++ (Zhou et al. 2019), RelayNet (Roy et al. 2017),
and so on.

Swin Transformer
Swin Transformer (Liu et al. 2021b) can serve as a general-
purpose backbone for computer vsion. It is a hierarchical
Transformer whose representation is computed with shifted
windows, which scheme brings greater efficiency. This hier-
archical architecture is flexible in modeling at various scales
and has linear computational complexity with respect to im-
age size.
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Figure 1: The architecture of Resnet used in DDPM.

Solution
Diffusion Model
Diffusion models are generative models that produce sam-
ples by inverting a corruption process. Given a data distribu-
tion x0 ∼ q (x0), diffusion models define a forward noising
process q which produces latents x1 through xT by adding
Gaussian noise at time t with variance βt ∈ (0, 1) as fol-
lows:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

therefore xt can be obtained as follows:

xt =
√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N (0, I) (2)

Given a sufficiently large T and a well behaved schedule
of βt, the latent xT is nearly an isotropic Gaussian distribu-
tion. Thus, if we know the mapping from xt to xt−1, we can
we can sample xT ∼ N (0, I) and run the process in reverse
to get a sample x0. To achieve that, we used a neural net-
work µ| (xt) to approximate this mapping, which is trained
to minimize the following loss function:

∥xt−1 − µ (xt, t)∥2 (3)

Alternatively, the network could also predict the noise ϵ.
In this case, since xt =

√
1− βtxt−1 +

√
βtϵt, we have:

xt−1 =
1√

1− βt

(
xt −

√
βtϵt

)
(4)

Thus, µ (xt, t) is rewritten as follows:

µ (xt, t) =
1√

1− βt

(
xt −

√
βtϵθ (xt, t)

)
(5)

where ϵθ (xt, t) denotes the neural network and θ is its pa-
rameters. Then the loss function is:

βt

1− βt
∥ϵt − ϵθ (xt, t)∥2 (6)
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Figure 2: The architecture of U-Net used in DDPM.

After the network is well trained, we can obtain xt−1 from
xt as follows:

xt−1 =
1√

1− βt

(
xt −

√
βtϵθ (xt, t)

)
+ σtz (7)

where z ∼ N(0, I).
A typical diffusion model takes a image sample xt−1 and

a timestep t as input and predicts noise ϵt−1 as output, where
xt−1 can be obtained by Equation (2). Therefor, the process
of inverse diffusion model can be estimated as Equation (8),

GΘ(xt−1, t) = ϵt−1 (8)

where G can be a deep network and Θ is the model parame-
ters that need to optimized. As described in the work of (Ho,
Jain, and Abbeel 2020), t will be encoded by a MLP and
added in the process of transition. We will describe in de-
tails about how we apply three different nerual networks in
DDPM and their corresponding structure.

Resnet
The adaptation of Resnet is simple. In Resnet, a ResBlock
can be designed as Equation (9).

y = F (x, {Wi}) + x (9)

To fuse the time information into the Resnet-based dif-
fusion model, we makes some modifications. As shown in
Figure 1, we simply add the projection of timestep embed-
ding at the begginning of each ResBlock, after which two
identical block of convolution layer with Batch Normaliza-
tion and ReLU activation is performed on the input feature.
This can be formulated as Equation (10).

y = F (AdaGN(t),x, {Wi}) + x (10)

In addition, we apply AdaGN on the input timestep em-
bedding, which is described as Equation (11).

AdaGN(h, y) = ysGroupNorm(h) + yb (11)

U-Net

U-Net(Ronneberger, Fischer, and Brox 2015) model is con-
sist of a stack of upsampling layers and downsampling lay-
ers, with skip connections connecting the layers with the
same spatial size. (Dhariwal and Nichol 2021) confirmed
that making some changes to the U-Net architecture can fur-
ther improved performance on the CIFAR-10 and CelebA-
64 datasets. So the final architecture of U-Net we apply in
this paper is illustrated as Figure 2. The U-Net model is con-
sist of a stack of residual layers and downsampling convolu-
tions, followed by a stack of residual layers with upsampling
convolutions, and the skip connections is the same of (Ron-
neberger, Fischer, and Brox 2015). We use a global attention
layer at the 16 × 16 resolution with a single head. In the
dowsampling process, a projection of the timestep embed-
ding will be added between two groups, each of which con-
tains a convolution layers followed by Group Normailiza-
tion and SiLU activation in a ResBlock. In the upsampling
process, timestep embedding is feeded after AdaGN in each
Res-Attn-Block.

Swin Transformer

The architecture of Swin Transformer (Liu et al. 2021b)
we use in DDPM is illustrated as Figure 3. We follow the
work of the original Swin Transformer but make somd ad-
justion. In (Liu et al. 2021b), each Swin Transformer block
consists of a shifted window based MSA module, followed
by a 2-layer MLP with GELU nonlinearity in between. A
LayerNorm (LN) layer is applied before each MSA mod-
ule and each MLP, and a residual connection is applied after
each module. To facilitate Swin Transformer to the diffu-
sion model, we add the timestep embedding in each Swin
Transformer layer after the MSA module and apply AdaGN
illustrated as Equation (11).
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Figure 3: The architecture of Swin Transformer used in
DDPM.

Optimization

Equation (12) is the original objective function, which is de-
rived by considering the variational lower bound.

E [− log pθ (x0)] ≤ Eq

[
− log

pθ (x0:T )

q (x1:T | x0)

]

= Eq

− log p (xT )−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)

 (12)

In order to simplify the training process, we follow (Ho,
Jain, and Abbeel 2020) and use Equation (13) to train the
three networks.

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
(13)

Experiment

Extensive experimentation is carried out to evaluate the pro-
posed solutions. We study three different network structures
mentioned above of diffusion model respectively.

Experiment Setup

Our method is implemented in PyTorch 1.7.1. All the mod-
els in the experiments were trained on 1 NVIDIA GeForce
RTX 3090 GPU. All the models were trained with Adamw
optimizer with betas = (0.9, 0.999), lr = 0.0001 and weight-
decay = 0. The number of iterations of training is 50w for
all models. Follows Improved DDPM (Nichol and Dhariwal
2021), the diffusion steps (T ) is set as 4000. In addition,
we used cosine noise schedule (Nichol and Dhariwal 2021),

which means that the βt will change with time t as follows:

βt = 1− αt

αt−1

αt =
f(t)

f(0)

f(t) = cos

(
t/T + s

1 + s
· π
2

) (14)

where s is a small offset to prevent βt from being too small
near t = 0.

Datasets
We compare image generation performance on CIFAR-10
(Krizhevsky, Hinton et al. 2009), a subset of the Tiny Im-
ages dataset and consists of 60000 32×32 color images. The
images consist of 10 mutually exclusive classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
There are 6000 images per class with 5000 training and 1000
testing images per class. All compared models are trained on
this dataset.

Evalution Metrics
The visual quality of generated or manipulated images is
evaluated through the widely-used FID (Heusel et al. 2017)
metrics and Inception Score (IS) (Li et al. 2019). These two
are regarded as typical metrics for evaluating the model for
image generation. FID measures the distance between two
sets of images, computed by the mean value and covariance
of the generated images and the original images. The smaller
the difference, the better the generated image is. IS pays par-
ticular attention to the diversity and clarity of the resulting
images. Higher IS results in better image quality.

FID(Y, Ŷ ) =
∥∥µY − µŶ

∥∥2
2

+ tr
(
ΣY +ΣŶ − 2

(
ΣY ΣŶ

) 1
2

) (15)

where (µY ,
∑

Y ) is generate image set,
(
µ̂Y , Σ̂Y

)
is origi-

nal image set.
We first quantitatively evaluate three network structures,

the U-Net, SwinIR and Restnet. The results are shown in Ta-
ble 1. We measure the results per 50000 training epochs. It is
evident that the model based on U-Net outperforms the other
models, achieving FID of 9.81 at 25 w epochs. The result of
SwinIR is lower than that of U-Net, and the result reaches
fid of 40.91 at 40w epochs. This suggests that SwinIR does
not have a downsampling and upsampling structure, which
may lead to lack of global information of the whole im-
ages. Resnet achieves FID on CIFAR-10 over 455, shows
obviously that it is difficult to converge, we suggest possi-
bly results of the lack of attention mechanism. The U-Net
based model achieves inception score of 9.759, significantly
outperforming the SwinIR based network and Resnet based
model with inception score of 5.978 and 1.209, respectively.
The U-Net based model achieves both high accuracy and Re-
call. The U-Net Accuracy is increased from 0.5498 to 0.6316



(a) Generated by U-Net based. (b) Generated by SwinIR based.

Figure 4: The images generated by U-Net based and SwinIR model.

epochs FID (numsample=50000) ↓ IS (numsample = 50000) ↑ Precision ↑ Recall ↑
25w 9.81 9.809 0.6286 0.5418

U-Net 40w 11.91 9.843 0.6269 0.5154
50w 13.52 9.759 0.6316 0.4961
25w 48.79 5.314 0.5498 0.3465

SwinIR 40w 43.56 5.734 0.5394 0.3806
50w 40.91 5.978 0.5347 0.4033
25w 455.28 1.209 0 0

ResNet 40w 455.42 1.210 0 0
50w 455.35 1.209 0 0

Table 1: Experiment Result

when compared to SwinIR, as well as Recall from 0.4033
to 0.5418. U-Net performs better than the other two ones,
then we will give further analysis of the generated images.
In the Figure 4,we qualitatively examine the images gener-
ated by U-Net based and SwinIR models. We don’t show
images generated by Resnet based models because it can’t
converge. Comparing with SwinIR, The images generated
by U-Net based diffusion model are clear and more realistic
with smooth lines, but the result is still not perfect, which
leaves room to improve.

Conclusion
In this paper, we perform experiments of image generation
on three different neural networks: U-Net, Resnet and Trans-
former. The results show that U-Net outperforms the others,
achieving FID on CIFAR-10 at 9.81. The result of SwinIR is
lower than that of U-Net, possible reason is that SwinIR does
not have a downsampling and upsampling structure. Resnet
is difficult to converge. The U-Net based model can generate
better quality images. Our experiments indicate that com-
pares to Resnet and Transformer, U-Net is the most suitable

one for diffusion model.
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